CALCULATION COVER SHEET

Project:	INEEL V-Ta	Number of Sheets:					
Site:	INEEL Test						
Calculation Number:	ABQ06 – CI	E002	Work Order Number: 12393.002.001				001
Subject:	Excavation	- Estimated Ex	xcavated Soi	il Volum	e/Storage	Requiremen	ts
Rev #:	Date:	Revision:	Calculate	ed by:			
				, .	Ch	ecked by:	Approved:
RAA		60%	Rob Ederer		Ch	ecked by:	Approved:
RAB	5/31/01	60% 90%	Rob Ederer		Berg Ke		Approved: Berg Keshian
	5/31/01					eshian	

	W.E		2 SHEET of
CLIENT/SUBJECT	MANAGERS	DESIGNERS CONSULTANTS	W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY B.KESHIN	DEPT	DATE 5/31/0	APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE
Problem Statement: Estimate the volume of containers.	excavated soil,	soil container capa	city, and quantity of
	volume of soil t	to be excavated.	ght capacity of the bags.
Assumptions: Average dry soil density is Average total density is Soil bag capacity is 258	y if 95.5 pcf. i 111 pcf. <i>を</i> is pof. こんん	16.2% WOIG	ire content p
Sources of Formulas	and References ng Data – Soils	s:	alculation ABQ05 – CE001)
Calculation:			
1. Estimake volum	a of Soil	For TANK Ex	ccauatin
Darth: 15'	Drea :	48×26'	2 1248 SF

1. Estimate volume of Soil for TANK Excavation

Parth: 15' Area: 48 x 26' = 1248 SF

Vol = 1248 x 15/27: 693 LY

 $\frac{170^{3} \times L}{\frac{4}{21} \times \frac{3}{2}} = \frac{3.14 \times 10^{2} \times 19.5}{\frac{4}{27} \times \frac{3}{2}} = \frac{3.14 \times 10^{2} \times 19.5}{\frac{4}{27} \times \frac{3}{2}} = \frac{85 \times 2}{27}$

Volume of Soil = 693-85 = 60864

$\sqrt{1/2}$		SHEET	of
MANAGERS V	DESIGNERS CONSULTANTS		

CLIENT/SUBJECT	MANAGERS	DESIGNENS CONSULTANTS	W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY	DEPT	DATE	APPROVED BY
MATH CHECK BY			
METHOD REV. BY	DEPT	DATE	DEPTDATE
2. Petermie Volu	me of Soil	for U9 \$	varue Box excauations
Assume Lef	th of 12' a	-lepths	
Vol = 18	1 www. x 12'	Long by 12	' Leaf /27
= 90	• ^د ې		
Ex <cude 1<="" td=""><td>19 TANK</td><td>and wal.</td><td>re box</td></cude>	19 TANK	and wal.	re box
U9 to	wh is do	o gol	
400 gel	17.45 gol/c	.j= = 53.69	CF z Z Ly
UAlue box			
6' x	6.5' x8'/z	.7 = 11	.5 69
Vol Soil	= 96 - Z - I	11.5 = 82	.5 44
3. Retermine U	olome of 5.	in from	Pipe Komoval
ASSUV	u (ines 7	" Lap x	I Wandey 3' wise
A550	200 me 1000 or	3 lais p	
W 250 x 7' x	(3)/27 =	176 1 17.8 cy	4
	Meglent (

	\ <u>```\</u> _{\		SHEET of	
CLIENT/SUBJECT	MANAGERS	DESIGNERS/CONSULTANTS	W.O. NO	
ASK DESCRIPTION			TASK NO	-
PREPARED BY	DEPT	DATE	APPROVED BY	
MATH CHECK BY	DEPT	DATE		4
METHOD REV. BY	DEPT	DATE	DEPTDATE	
/c. sserve	20% Expres 847 468 X	SIM	108 cy (84.7 pt 922 cy 1016	€
5) Estimate in	•		3 cf al 2400 Ub Enin. 1	L
bysed on o	,			
CAPAZITY of	BAg - Voi	1 boy 2	258 258	· •/•
_	B 49 /6			
1016 972 cg/	8 = M 127 715	-bays f	Svil -	
6. Sotwick	No of lang	s for fif	uning a second	

	5	Œ	5
SHEET	of		_

	MANAGERS	DESIGNERS/CONSULTANTS	SHEET OT
CLIENT/SUBJECT			W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY	DEPT	DATE	_ APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE
Assusma Volum			•
	e Bow cf/	272 29.63	
	• ·	6455 -]	ASSUME 7 hays of pipe
7. Petermine Str.	styr Ander Strik Z	for BAYS	134 PL
Allen of	EXCH My	e 57.4 St	
134 132 hays × 52.			
Size Anon or 45	Rettrugle	3600 h	4 SPACE ADAILAGE 5300 SF which Allows for by Oxpansion
1/13 < USSIAL TOTAL	Soi Ublum	1016 4 922 cy	
TOTAL SOIL C	BALY, I	34 132 PAGS	84% 346 \$ 85% CAPACITY 3200 SF

RFW 10-05-003/A-5/85

	CXXX		CUE	EET of
CLIENT/SUBJECT / TA	NANAGERS DE	ESIGNERS/CONSULTANTS	W.O. NO.	
TASK DESCRIPTION			TASK NO	D
PREPARED BY B. KESHIAN	DEPT	_ DATE <u>9/27/01</u>	APP	ROVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPT	_DATE
* There is the Base within	tle A	.0c and 4	sydour	
PRUM Storage			stel a	nd
1' x 3000 SP HIC STORAGE	× 1/27 =	111 24		
1, x(23×23)	1 (53+15 x	45) = 161	- - - 7	
Offsite Access Rd				
1/2 x12	×113 ×1/27		ゴ	
+ 1/2 x 20 x	< 255 ×1/27	- 94 6	7	
Other grovel Alea				
[1/2 X15 X70] + (1/2	x 23 ×165) + (1/2 XZ3X4	5) 4/27	: 83 cy

10 TAC = 474 C4 OR
AFFROX 59 BAGS

CALCULATION COVER SHEET

Project:	INEEL V-Tank Remediation Project						Number of Sheets: 1 of 9		
Site:	INEEL Test	INEEL Test Area North, Idaho Falls, Idaho							
Calculation Number:	ABQ07 – CI	E003		001					
Subject:	Lifting Req	uirements	L.						
Rev #:	Date:	Revision:	Calculate	d by:	Ch	ecked by:	Approved:		
RAA	4/11/01	60%	R. Ederer		N/A		N/A		
RAB	6/1/01	90%	R. Ederer		D. Beni	necke	B.Keshian		
RAC	6/27/01	90% Polish	D. Brenneck	e	B. Kesh	nian	B. Keshian		
RAD	9/27/01	Draft Final	D. Brenneck		B. Kesh		1111111		

Client/Subject: INEEL-BBWI / V-tank Removal Project W.O. No.:12393.002.001

Task Description: Lifting Requirements

Task: 90% Design Calc

Prepared by: R. Ederer

Problem Statement:

Evaluate the lifting requirements of the V-1, 2, 3, and V-9 tanks. Consider lifting of shipping casks, concrete rad-vault, and soil bags.

Method of Solution:

- 1. Estimate the tank surface area.
- 2. Estimate thickness of the steel.
- 3. Estimate the tank weight.

Assumptions: / DATA PROVIDED by ENEEL

- 1. The tanks are stainless steel (type 304 for this analysis)
- 2. The V-1, 2, 3 tanks are 10 ft. diameter and 19.5 ft. long.
- 3. The V-9 tanks is 3.5 ft diameter by 5.5 ft to top of cone section, cone is 1.75' long.

Sources of Formulas and References:

- Grove Hydraulic Crane Product literature
- Design Drawings
- Duratek shipping container and vault literature
- "Lift Liner" system product literature

Calculation:

A. Calculate the expected weight of V-1, V-2, and V-3 Tanks

1. Determine the surface area of the tanks.

Dia
$$_{tank}$$
 := 10 L $_{tank}$:= 19.5

Area $_{surface}$:= $\langle Dia _{tank} \cdot \pi \cdot L _{tank} \rangle + 2 \cdot \pi \cdot \frac{Dia _{tank}}{4}$ 785 sf

Assume the tank thickness: t_{shell} := $\frac{0.25}{12}$

2. Determine the tank weight

Steel volume is:
$$Vol_{sst} := t_{shell} \cdot Area_{surface}$$
 $Vol_{sst} = 16.35$ cf

Assume the density of Type 304 stainless steel is:

$$sg_{sst} := 8.04$$
 $\rho_{sst} := sg_{sst} \cdot 62.4$ $\rho_{sst} = 501.7$ pcf

The tank weight is:

$$W_{tank} := \rho_{sst} \cdot Vol_{sst}$$

• W_{tank} 8203

Assume approximately 2" of liquid or sludge left in the tank when lifted.

$$s := \frac{2}{12}$$

$$\alpha := \frac{s}{r}$$

$$s := \frac{2}{12}$$
 $r := 5$ $\alpha := \frac{s}{r}$ $\alpha = 0.033$

$$W_{\text{liquid}} := (0.5 \cdot r^2 \cdot \alpha - \sin(\alpha)) \cdot L_{\text{tank}} \cdot (62.4 \cdot 1.2)$$

$$W = 601$$
 lbs

Adujet tank weight for fittings, flanges, and miscellaeous piping (1,000 lbs).

$$W_{tank} := (W_{tank} + W_{liquid} + 1000)$$

$$W_{tank} := 9804$$
 lbs

B. Estimate the weight of the V-9 tank. To be conservative and simplify the calculation, assume the cone section is a cylinder.

Dia
$$tank v_0 := 4$$

Dia
$$tank.v9 := 4$$
 L $tank.v9 := 5 + 1.5$

Area surface.v9 :=
$$\left(Dia_{tank.v9}^{2} \cdot \frac{\pi}{2} \right) + L \cdot \left(\pi \cdot Dia_{tank.v9} \right)$$
 area := 101.71 sf

$$t_{\text{shell}} := \frac{0.25}{12}$$

2. Determine the tank weight

Steel volume is:

Vol
$$_{sst.v9} := t_{shell} \cdot Area_{surface.v9}$$
 Vol $_{sst.v9} = \bullet$

$$Vol_{sst.v9} = 1$$

Assume the density of Type 304 stainless steel is:

$$\rho_{--} := sg_{--} \cdot 62.4$$

$$sg_{sst} := 8.04$$
 $\rho_{sst} := sg_{sst} \cdot 62.4$ $\rho_{sst} = 501.7$ pcf

The tank weight is:

$$W_{tank.v9} := \rho_{sst} \cdot Vol_{sst.v9}$$
 $W_{tank.v9} = 1063$ lbs

Adujst tank weight for fittings, flanges, and miscellaeous piping (500 lbs).

$$W_{tank.v9} := W_{tank.v9} + 500$$
 1563 lbs

- C. Evaluate the lifting requirements for the tanks. Design lifting for V-1, 2, & 3 tanks
 - 1. In summary, the weight of each tanks is:

W.tank =9804 lbs

V-9:

$$W_{tank,v9} = 1563 lbs$$

2. Assume the tanks are placed in granular fill material (cohesion = 0), with no groundwater therefore neglect the suction required to overcome the capillary forces.

$$c := 0$$
 $c_a := c \cdot 0.9$

- 3. Add the force to overcome soil friction. Assume the soil rises to the springline of the tank (5').
 - a. Determine the active soil force on the tank

$$\gamma_{soil} := 111 \text{ pcf} \quad H := 5 \quad \phi := 32 \cdot \text{deg}$$

$$K_a := \frac{1 - \sin(\phi)}{1 + \sin(\phi)}$$
 $K_a = 0.307$

$$p_{\text{vertical}} := \gamma_{\text{soil}} \cdot H = 1 555$$

$$P_{active} := K_a \cdot p_{vertical}$$

b. Determine the skin friction coefficient on the tank.

$$\delta := 17 \cdot \text{deg}$$
 Ca := 0.9

$$\delta := 17 \cdot \text{deg}$$
 Ca := 0.9 $f_o := c_a + P_{active} \cdot \tan(\delta)$ $f_o = 1 \quad 53.5 \text{ psf}$

c. Estimate the surface area of the tank in contact with soil.

$$\frac{(19.5 \text{ xTk}10)}{2} \qquad \text{s}_{\text{tank}} = \bullet \circ 306$$

d. Estimate the breaking force to overcome the soil friction

$$P_{break} := f_{o} \cdot s_{tank}$$
 $P_{break} = \bullet \cdot 16,387$ lbs

4. Estimate the lifting requirement for removing the largest tank.

Discussion

Summary of calcs:

weight of each V-1, V-2, and V-3 tanks (tons):

W ea.tank=4.9 tons

weight of V-9 tank (tons):

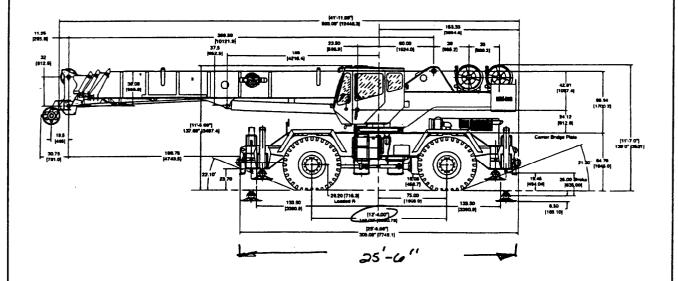
W tank.v9

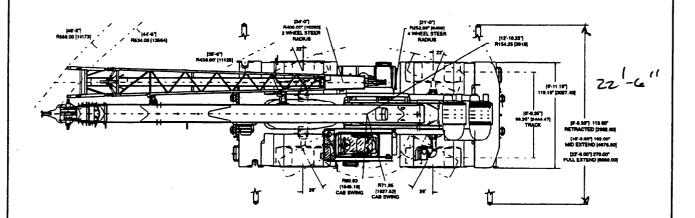
0.781 tons

Tank lifting capacity required (tons)

Lift capacity 13.1 tons

Select a Grove RT650E Series Rough Terrrain Hydraulic Crane or equal. A cut sheet is included as Attachment 1. This crane will be adequate for other lifting requirements on the job such as the "Rad Vault 8-120" with loaded HIC (66,700 lbs + 7,500 lbs = 74,200 lbs), DURATEK CNS 8-120B Type B shipping casks (49,300 lbs, empty; 63,980 lbs w/maximum payload) and soil bags (24,000 lbs).


ATTACHMENT 1 60F9


RT600E SERIES

ROUGH TERRAIN HYDRAULIC CRANE

Dimensions

Note: () Reference dimensions in mm

RT650E RATED LIFTING CAPACITIES IN POUNDS 33 FT. - 105 FT. BOOM

ON OUTRIGGERS FULLY EXTENDED - 360°

Radius					#0001				
in				Main Boo	om Lengt	n in Feet			
Feet	33	40	50	60	70	80	90	100	105
10	100,000 (69.5)	80,550 (73.5)	67,250 (77)		,				
12	87,100 (65.5)	79,150 (70.5)	64,200 (75)	*56,100 (78)					
15	69,050 (59.5)	69,550 (65.5)	59,950 (71)	51,800 (75)	45,200 (77.5)				
20	50,500 (47.5)	50,950 (57)	51,400 (64.5)	44,500 (69.5)	38,550 (73)	34,450 (75.5)	*31,400 (78)		
25	38,300 (32)	38,850 (47)	39,350 (58)	39,650 (64.5)	37,100 (68.5)	29,850 (72)	27,250 (74.5)	21,000 (76.5)	18,350 (77.5)
30		30,700 (34.5)	31,200 (50.5)	31,500 (58.5)	31,700 (64)	26,350 (68)	24,100 (71)	21,000 (73.5)	18,350 (74.5)
35			25,450 (41.5)	25,750 (52.5)	26,000 (59)	23,650 (64)	21,500 (67.5)	19,150 (70)	18,350 (71.5)
40			20,850 (30.5)	21,200 (46)	21,600 (54)	21,350 (59.5)	19,400 (64)	16,650 (67)	17,300 (68.5)
45				17,100 (38)	17,350 (48.5)	17,300 (55)	17,300 (60)	14,650 (64)	15,750 (65.5)
50				13,950 (28)	14,150 (42.5)	14,200 (50.5)	14,200 (56)	13,000 (60.5)	14,300 (62.5)
55		-			11,700 (35)	11,750 (45.5)	11,850 (52)	11,900 (57)	12,000 (59)
60					9,730 (26)	9,870 (39.5)	9,980 (47.5)	10,100 (53.5)	10,150 (55.5)
65						8,300 (33)	8,440 (42.5)	8,600 (49.5)	8,680 (52)
70						6,960 (24.5)	7,170 (37.5)	7,340 (45.5)	7,430 (48.5)
75							6,080 (31)	6,290 (40.5)	6,390 (44.5)
80							5,130 (23)	5,380 (35.5)	5,490 (40)
85						,		4,580 (29.5)	4,720 (35)
90								3,880 (22)	4,020 (29)
95									3,400 (21.5)
Minimum	boom ar	gle (°) fo	rindicate	d length (no load)				0
Maximur	n boom le	ngth (ft.)	at 0° boo	m angle (no load)				105

NOTE: () Boom angles are in degrees.
#LMI operating code. Refer to LMI manual for operating instructions.

*This capacity is based on maximum boom angle.

Lifting Capacities at Zero Degree Boom Angle On Outriggers Fully Extended - 360°										
Boom	Main Boom Length in Feet									
Angle	33	40	50	60	70	80	90	100		
0°	16,250 (28.2)	12,500 (35)	8,780 (45)	6,290 (55)	4,510 (65)	3,160 (75)	2,110 (85)	1,260 (95)		

NOTE: () Reference radii in feet.

A6-829-100936

RT600E SERIES ON RUBBER CAPACITIES

STATIONARY CAPACITIES 360°

Radius	#9005								
in		Main Bo	om Lengt	h in Feet					
Feet	33	40	50	60	70				
10	38,550 (69.5)	38,550 (73.5)							
12	32,550 (65.5)	32,550 (70.5)	32,550 (74.5)						
15	23,700 (59.5)	23,700 (65.5)	23,700 (71)	23,700 (75.5)					
20	14,450 (47.5)	14,450 (57)	14,450 (64.5)	14,450 (70)	14,450 (73.5)				
25	9,640 (32)	9,640 (47)	9,640 (58)	9,640 (65)	9,640 (69.5)				
30		6,840 (34.5)	6,840 (50)	6,840 (59)	6,840 (64.5)				
35			4,850 (41.5)	4,850 (53)	4,850 (60)				
40			3,450 (30.5)	3,450 (46.5)	3,450 (54.5)				
45				2,410 (38.5)	2,410 (49)				
50				1,610 (28.5)	1,610 (43)				
Min. boom	angle (°) fo	r indicated	length (no	load)	30				
Max. boom	length (ft.)	at 0° boom	angle (no	load)	60				

NOTE: () Boom angles are in degrees. #LMI operating code. Refer to LMI manual for operating instructions.

Lifting Capacities at Zero Degree Boom Angle On Rubber - 360°					
Boom	Main Boom Length in Feet				
Angle	33	40	50		
0°	7,580 (28.2)	4,850 (35)	2,410 (45)		

NOTE: () Reference radii in feet.

A6-829-100836A

STATIONARY CAPACITIES DEFINED ARC OVER FRONT (See Note 3)

Radius	#9005						
in	Main Boom Length in Feet						
Feet	33	40	50	60	70		
10	46,600 (69.5)	40,800 (73.5)	34,600 (77)				
12	40,800 (65.5)	40,800 (70.5)	34,600 (74.5)				
15	34,000 (59.5)	34,000 (65.5)	34,000 (71)	26,650 (75.5)	21,500 (78)		
20	26,050 (47.5)	26,050 (57)	26,050 (64.5)	26,050 (70)	21,500 (73.5)		
25	18,200 (32)	18,200 (47)	18,200 (58)	18,200 (65)	18,200 (69.5)		
30		13,100 (34.5)	13,100 (50)	13,100 (59)	13,100 (64.5)		
35			10,050 (41.5)	10,050 (53)	10,050 (60)		
40			7,900 (30.5)	7,900 (46.5)	7,900 (54.5)		
45				6,290 (38.5)	6,290 (49)		
50				5,050 (28.5)	5,050 (43)		
55					4,060 (35.5)		
60					3,260 (26.5)		
Min. boom	Min. boom angle (°) for indicated length (no load)						
Max. boom	Max. boom length (ft.) at 0° boom angle (no load)						

NOTE: () Boom angles are in degrees. #LMI operating code. Refer to LMI manual for operating instructions.

Lifting Capacities at Zero Degree Boom Angle On Rubber - Defined Arc Over Front					
Boom Angle	Main Boom Length in Feet				
Aligie	33	40	50	60	70
0°	14,550 (28.2)	10,050 (35)	6,290 (45)	4,060 (55)	2,590 (65)

NOTE: () Reference radii in feet.

A6-829-100835A

CALCULATION COVER SHEET

Project:	INEEL V-Tank Remediation Project					Number of Sheets:	
Site:	INEEL Test	INEEL Test Area North, Idaho Falls, Idaho					
Calculation Number:	ABQ08 – CI	ABQ08 – CE004 Work Order Number: 12393.002.001				01	
Subject:	Drum Stora Requireme	ige/Water Stora	age/Deconta	mination	n Area Sed	condary Cont	ainment
Rev#:	Date:	Revision:	Calculat	ed by:	Ch	ecked by:	Approved:
RAA		60%	R. Ederer				
RAB	5/31/01	90%	R. Ederer		B. Kesh	nian	B. Keshian
RAC	6/29/01	90% Polish	D. Brenned	ke	B. Kesh	nian	B. Keshian
RAD	9/27/01	Draft Final	D. Brenned	ke	B. Kesh	nian	Jim Lockhart
RAE	10/23/01	Draft Final Polish	D. Brenned	ke	B. Kesh	nian	Jim Lockhart

CLIENT/SUBJECT			W.O. NO			
TASK DESCRIPTION		TASK NO				
PREPARED BY	DEPT	DATE	APPROVED BY			
MATH CHECK BY	DEPT	DATE				
METHOD REV. BY	DEPT	DATE	DEPTDATE			

Problem Statement:

Estimate the containment area required for Storage of contaminated liquids.

Secondary containment

Method of Solution:

- 1. Determine the area needed for containers.
- 2. Determine the volume need for 35 yr /24 hr storm.
- 3. Determine volume of liquids in containers.
- 4. Design containment bern with a capacity to contain the volume of containated liquids \$ 25 yr/24 hr. storm.

Bources of Information:

Design Drawings Design Information from Bartlett, INEEL and BBULLI

NOAA ATLAS 2, VOLV, ISOPLUVIALS OF 25 yr / 24 hr. Precipitation in tentis of AN INCH TR-55

Assumptions:

$$S = \frac{1000}{cN} - 10$$

$$Q = \frac{(P - 0.25)^{2}}{(P + 085)}$$

DETERMINATION OF WATER SOURCES

Item	Value	Units
Sources of water		
V-1	1164	gallons
V-2	1076	galions
V-3	7648	gallons
V-9	70	gallons
Decon	2000	gallons
Runoff	15000	gallons
Rinse	500	gallons
Total water volume	27458	gallons

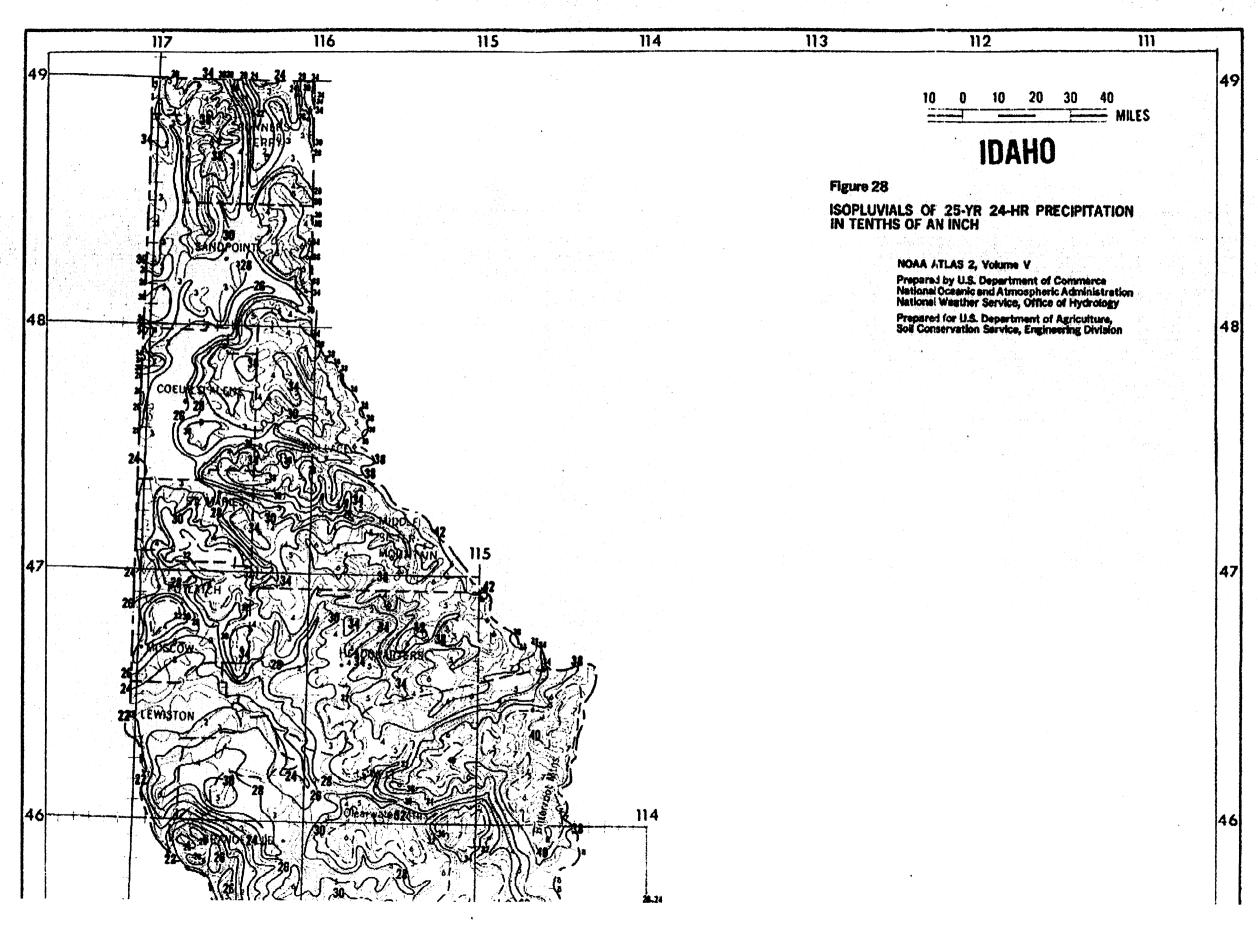
CLIENT/SUBJECT		W.O. NO			
TASK DESCRIPTION		TASK NO			
PREPARED BY	DEPT	DATE	APPROVED BY		
MATH CHECK BY	DEPT	DATE			
METHOD REV. BY	DEPT	DATE	DEPTDATE		
1					

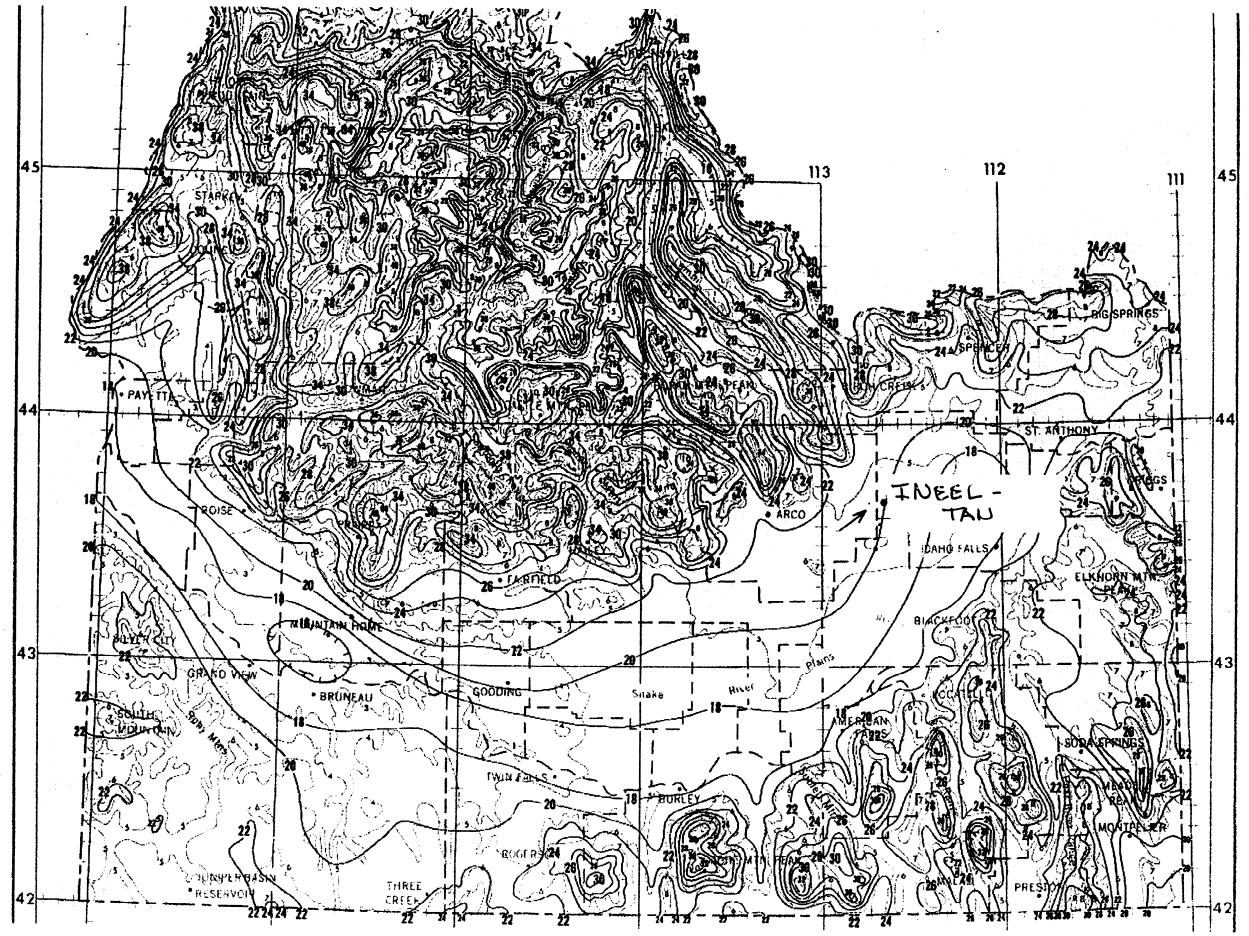
Assumptions Con't

- · Contain 100% volume of the largest container or 10% of total storage volume phis volume of 25 YR 24 HR storm per 40 CFR 264. 17563
 - · Total storage volume:

Decon, Runoff Rinse, Tank water & 30,000 GALLONS

- · Largest container will be 10,000 GAL water tank (12'\$ x /4' HIGH) Area regid = TT 62 = 113 SF/TANK
- · ESTIMATED AREA OF CONTAINMENT AREA FROM DRAWINGS


$$26,000 \text{ SF} \times \frac{\text{Mi}^2}{(5780 \text{ FT/m})^2} = 0.000 215 \text{ mi} 2$$


SHEET	5	of	8
O. ILL		v.	

	MANAGERS	DESIGNERS/CONSULTANTS	SHEET	
CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	
PREPARED BY	DEPT	DATE	APPRO	VED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPTD	ATE
Calculations:		······································		
Volume OF	Stormun	to from u	othin contain	ment area.
			77	
V = Q * Am.	¥ 53×33			
AC FT				
Am = C	Trea in miz	er en		
$Q = \left(\frac{P_2}{25}\right)$	0.23)			
$\overline{(p_{\pm})}$	0.85)			•
		······································		
S = 100	00 - 10 =) S = 100 79	0-10 = 2.66	
P ₂₅ = 2.				
Q = 0.	522 in			
$\varphi = \varphi$				
V = 0.5	22 × 0,000	215 mi 2)	× 53.33	
= 0.	005985 AC-	FT x 43.5	560SF = 26	0.7 CF
			AC	
				0.7 CFX 7.48 qu
				CF
				<u>.</u>
storage Vol	lume Regia	<u></u>	= 1950 ====================================	D GAL C
	•	· · · · · · · · · · · · · · · · · · ·		
Vol = lank	C + 25 YE 2 000 GAL T	4 HR STOR	Maria and a	
= 10,	000 GAL T	1950 GAL		
	, 950 GAL			

LANGERS CORSULTATIS

CLIENT/SUBJECT /NEEL V-TANK . W.O. NO. . TASK DESCRIPTION RECALCULATE SIZE OF DRUM STORAGE APPR TASK NO. 1)FB DATE 8/1/101 PREPARED BY DEPT_ **APPROVED BY** DATE _ MATH CHECK BY DEPT. **METHOD REV. BY** DEPT. DATE DEPT. DATE ASSUMPTIONS DRUMS ARE MOVED DIRECTLY TO INTERIM STURAGE AFTER FICCINC AND IN MERE THAN 10 DRUMS ARE STIRED IN DRUM STORAGE AREA AT ONE TIME - DRUM STRAGE AREA IS 25 Donum - 19 on the HEO STORAGE TANKS (12'V) REQUIRE TIG = 1135 / TANK 30% ADDITIONAL AREA READ FOR LOGISTICS 10,975 GAC OF SECONDARY CONTAINMENT STORAGE IS REQD (AB908 RAC) 10,000 CAL + 1859 = 10975) ASSUMES 3,000 SE AREA CATCHES STOLM WATER CALCULATE AREA REQU 2500 25 peum x 10 Drums DRUMS 226 A 1000 CAL WATER STORACE
11,000 CAL WATER CONTRIBE
(6 x 14.5 = 870) 113 SF/THANK X 3 MANKS 87 SF/MAR & 10 MANES 1346 +30% LOLISTICS 404 7600 ACCESS ROAD RIXG CALCULATE MIN AREA READ ASSUMING MWINUM STURALE 10,975 GAL 77.98 E = 1467 2 MW AREA > MITIMEN DIMENSIONS OF ANCA = \$1500 P' = 38.7' : MAKE AREA BOX 60 TO ACCUMEDATE SEMI THETOR TRAILOR DECON RFW 10-05-003/A-5/85 512-5643

